Many of the chemical elements have a number of isotopes. The isotopes of an element have the same number of protons in their atoms (atomic number) but different masses due to different numbers of neutrons. In an atom in the neutral state, the number of external electrons also equals the atomic number. These electrons determine the chemistry of the atom. The atomic mass is the sum of the protons and neutrons. There are 82 stable elements and about 275 stable isotopes of these elements.
When a combination of neutrons and protons, which does not already exist in nature, is produced artificially, the atom will be unstable and is called a radioactive isotope or radioisotope. There are also a number of unstable natural isotopes arising from the decay of primordial uranium and thorium. Overall there are some 1800 radioisotopes.
At present there are up to 200 radioisotopes used on a regular basis, and most must be produced artificially.
Radioisotopes can be manufactured in several ways. The most common is by neutron activation in a nuclear reactor. This involves the capture of a neutron by the nucleus of an atom resulting in an excess of neutrons (neutron rich). Some radioisotopes are manufactured in a cyclotron in which protons are introduced to the nucleus resulting in a deficiency of neutrons (proton rich).
The nucleus of a radioisotope usually becomes stable by emitting an alpha and/or beta particle (or positron). These particles may be accompanied by the emission of energy in the form of electromagnetic radiation known as gamma rays. This process is known as radioactive decay.
Radioactive products which are used in medicine are referred to as radiopharmaceuticals.
Isotopes used in Medicine
Many radioisotopes are made in nuclear reactors, some in cyclotrons. Generally neutron-rich ones and those resulting from nuclear fission need to be made in reactors, neutron-depleted ones are made in cyclotrons. There are about 40 activation product radioisotopes and five fission product ones made in reactors.
Reactor Radioisotopes (half-life indicated)
Bismuth-213 (46 min): Used for targeted alpha therapy (TAT), especially cancers, as it has a high energy (8.4 MeV).
Chromium-51 (28 d): Used to label red blood cells and quantify gastro-intestinal protein loss.
Cobalt-60 (5.27 yr): Formerly used for external beam radiotherapy, now used more for sterilising
Dysprosium-165 (2 h): Used as an aggregated hydroxide for synovectomy treatment of arthritis.
Erbium-169 (9.4 d): Use for relieving arthritis pain in synovial joints.
Holmium-166 (26 h): Being developed for diagnosis and treatment of liver tumours.
Iodine-125 (60 d): Used in cancer brachytherapy (prostate and brain), also diagnostically to evaluate the filtration rate of kidneys and to diagnose deep vein thrombosis in the leg. It is also widely used in radioimmuno-assays to show the presence of hormones in tiny quantities.
Iodine-131 (8 d)*: Widely used in treating thyroid cancer and in imaging the thyroid; also in diagnosis of abnormal liver function, renal (kidney) blood flow and urinary tract obstruction. A strong gamma emitter, but used for beta therapy.
Iridium-192 (74 d): Supplied in wire form for use as an internal radiotherapy source for cancer treatment (used then removed).
Iron-59 (46 d): Used in studies of iron metabolism in the spleen.
Lutetium-177 (6.7 d): Lu-177 is increasingly important as it emits just enough gamma for imaging while the beta radiation does the therapy on small (eg endocrine) tumours. Its half-life is long enough to allow sophisticated preparation for use. It is usually produced by neutron activation of natural or enriched lutetium-176 targets.
Molybdenum-99 (66 h)*: Used as the 'parent' in a generator to produce technetium-99m.
Palladium-103 (17 d): Used to make brachytherapy permanent implant seeds for early stage prostate cancer.
Phosphorus-32 (14 d): Used in the treatment of polycythemia vera (excess red blood cells). Beta emitter.
Potassium-42 (12 h): Used for the determination of exchangeable potassium in coronary blood flow.
Rhenium-186 (3.8 d): Used for pain relief in bone cancer. Beta emitter with weak gamma for imaging.
Rhenium-188 (17 h): Used to beta irradiate coronary arteries from an angioplasty balloon.
Samarium-153 (47 h): Sm-153 is very effective in relieving the pain of secondary cancers lodged in the bone, sold as Quadramet. Also very effective for prostate and breast cancer. Beta emitter.
Selenium-75 (120 d): Used in the form of seleno-methionine to study the production of digestive enzymes.
Sodium-24 (15 h): For studies of electrolytes within the body.
Strontium-89 (50 d)*: Very effective in reducing the pain of prostate and bone cancer. Beta emitter.
Technetium-99m (6 h): Used in to image the skeleton and heart muscle in particular, but also for brain, thyroid, lungs (perfusion and ventilation), liver, spleen, kidney (structure and filtration rate), gall bladder, bone marrow, salivary and lacrimal glands, heart blood pool, infection and numerous specialised medical studies. Produced from Mo-99 in a generator.
Xenon-133 (5 d)*: Used for pulmonary (lung) ventilation studies.
Ytterbium-169 (32 d): Used for cerebrospinal fluid studies in the brain.
Ytterbium-177 (1.9 h): Progenitor of Lu-177.
Yttrium-90 (64 h)*: Used for cancer brachytherapy and as silicate colloid for the relieving the pain of arthritis in larger synovial joints. Pure beta emitter and of growing significance in therapy.
Radioisotopes of caesium, gold and ruthenium are also used in brachytherapy.
Cyclotron Radioisotopes
Carbon-11, Nitrogen-13, Oxygen-15, Fluorine-18: These are positron emitters used in PET for studying brain physiology and pathology, in particular for localising epileptic focus, and in dementia, psychiatry and neuropharmacology studies. They also have a significant role in cardiology. F-18 in FDG (fluorodeoxyglucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET.
Cobalt-57 (272 d): Used as a marker to estimate organ size and for in-vitro diagnostic kits.
Copper-64 (13 h): Used to study genetic diseases affecting copper metabolism, such as Wilson's and Menke's diseases, and for PET imaging of tumours, and therapy.
Copper-67 (2.6 d): Beta emitter, used in therapy.
Fluorine-18 as FLT (fluorothymidine), F-miso (fluoromisonidazole), 18F-choline: tracer.
Gallium-67 (78 h): Used for tumour imaging and localisation of inflammatory lesions (infections).
Gallium-68 (68 min): Positron emitter used in PET and PET-CT units. Derived from germanium-68 in a generator.
Germanium-68 (271 d): Used as the 'parent' in a generator to produce Ga-68.
Indium-111 (2.8 d): Used for specialist diagnostic studies, eg brain studies, infection and colon transit studies.
Iodine-123 (13 h): Increasingly used for diagnosis of thyroid function, it is a gamma emitter without the beta radiation of I-131.
Iodine-124: tracer.
Krypton-81m (13 sec) from Rubidium-81 (4.6 h): Kr-81m gas can yield functional images of pulmonary ventilation, e.g. in asthmatic patients, and for the early diagnosis of lung diseases and function.
Rubidium-82 (1.26 min): Convenient PET agent in myocardial perfusion imaging.
Strontium-82 (25 d): Used as the 'parent' in a generator to produce Rb-82.
Thallium-201 (73 h): Used for diagnosis of coronary artery disease other heart conditions such as heart muscle death and for location of low-grade ly
1 comment:
Hi,
Healthline.com recently launched a free interactive "Human Body Maps" tool. I thought your readers would be interested in our body map of the kidney: http://www.healthline.com/human-body-maps/kidney
It would be much appreciated if you could include this tool on http://fascinatingphysics.blogspot.com/2010/12/what-are-radioisotopes.html and / or share with friends and followers. Please let me know if you have any questions.
Thank you in advance.
Warm Regards,
Maggie Danhakl- Assistant Marketing Manager
p: 415-281-3124 f: 415-281-3199
Healthline Networks, Inc. * Connect to Better Health
660 Third Street, San Francisco, CA 94107 www.healthline.com
Post a Comment